Exploring the fate of the tris(pentafluorophenyl)borane radical anion in weakly coordinating solvents.

نویسندگان

  • Elliot J Lawrence
  • Vasily S Oganesyan
  • Gregory G Wildgoose
  • Andrew E Ashley
چکیده

We report a kinetic and mechanistic study into the one-electron reduction of the archetypal Lewis acid tris(pentafluorophenyl)borane, B(C(6)F(5))(3), in dichloromethane and 1,2-difluorobenzene. Electrochemical experiments, combined with digital simulations, DFT computational studies and multinuclear NMR analysis allow us to obtain thermodynamic, kinetic and mechanistic information relating to the redox activity of B(C(6)F(5))(3). We show that tris(pentafluorophenyl)borane undergoes a quasi-reversible one-electron reduction followed by rapid chemical decomposition of the B(C(6)F(5))(3)˙(-) radical anion intermediate via a solvolytic radical pathway. The reaction products form various four-coordinate borates of which [B(C(6)F(5))(4)](-) is a very minor product. The rate of the follow-up chemical step has a pseudo-first order rate constant of the order of 6 s(-1). This value is three orders of magnitude larger than that found in previous studies performed in the donor solvent, tetrahydrofuran. The standard reduction potential of B(C(6)F(5))(3) is reported for the first time as -1.79 ± 0.1 V and -1.65 ± 0.1 V vs. ferrocene/ferrocenium in dichloromethane and 1,2-difluorobenzene respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dioxygen reactivity with a ferrocene-Lewis acid pairing: reduction to a boron peroxide in the presence of tris(pentafluorophenyl)borane.

Ferrocenes, which are typically air-stable outer-sphere single-electron transfer reagents, were found to react with dioxygen in the presence of B(C6 F5 )3 , a Lewis acid unreactive to O2 , to generate bis(borane) peroxide. Although several Group 13 peroxides have been reported, boron-supported peroxides are rare, with no structurally characterized examples of the BO2 B moiety. The synthesis of ...

متن کامل

Enantioselective Diels–Alder Reaction Induced by Chiral Supramolecular Lewis Acid Catalysts Based on CN···B and PO···B Coordination Bonds

Chiral supramolecular boron Lewis acid catalysts were developed with the use of chiral 3-phosphoryl-BINOLs, 2-cyanophenylboronic acids, and tris(pentafluorophenyl)borane based on CN···B and PO···B coordination bonds. In particular, coordinated tris(pentafluorophenyl)boranes can increase the Lewis acidity of the active center based on the Lewis acidassisted Lewis acid catalyst system. A possible...

متن کامل

From betaines to anionic N-heterocyclic carbenes. Borane, gold, rhodium, and nickel complexes starting from an imidazoliumphenolate and its carbene tautomer

The mesomeric betaine imidazolium-1-ylphenolate forms a borane adduct with tris(pentafluorophenyl)borane by coordination with the phenolate oxygen, whereas its NHC tautomer 1-(2-phenol)imidazol-2-ylidene reacts with (triphenylphosphine)gold(I) chloride to give the cationic NHC complex [Au(NHC)2][Cl] by coordination with the carbene carbon atom. The anionic N-heterocyclic carbene 1-(2-phenolate)...

متن کامل

The structure and chemistry of tris(pentafluorophenyl)borane protected mononuclear nitridotitanium complexes.

Treatment of TiCl(NMe(2))(3) with H(3)N·B(C(6)F(5))(3) results in N-H activation and ligand exchange to yield the structurally characterised salt [TiCl(NMe(2))(2)(NMe(2)H)(2)](+)[Ti[triple bond]NB(C(6)F(5))(3)(Cl)(2)(NMe(2)H)(2)](-). Cation exchange with [Me(4)N]Cl, [Ph(4)P]Cl and [(PhCH(2))Ph(3)P]Cl yields the respective ammonium and phosphonium salts of the [Ti[triple bond]NB(C(6)F(5))(3)(Cl)...

متن کامل

On the possibility of catalytic reduction of carbonyl moieties with tris(pentafluorophenyl)borane and H2: a computational study.

The study thoroughly examines the Gibbs free energy surfaces of a new mechanism for reduction of ketones/aldehydes by tris(pentafluorophenyl)borane (1) and H(2). Key elements of the proposed mechanism are the proton and the hydride transfer steps similar to Stephan's catalytic reduction of imines by 1. The proton is transferred to the ketone/aldehyde in the process of H(2) cleavage by the carbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2013